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LETTER TO THE EDITOR 

The finite connectivity spin glass: investigation of replica 
symmetry breaking of the ground state 
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Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA 

Received 21 March 1990 

Abstract. The free energy of the fixed finite connectivity spin glass is investigated in detail 
and we prove the equivalence of different forms which were obtained in the literature using 
completely different methods. Furthermore, the question of replica symmetry breaking is 
examined for low connectivity. We find by a variational calculation that even for a first-step 
breaking one can obtain a more optimal value for the ground state energy by going beyond 
the simple ansatz of Wong-Sherrington of totally uncorrelated groups of replicas. 

There has been recent interest in the theory of randomly frustrated systems, and in 
particular spin glasses on lattices with finite connectivity. Such systems are closer 
in nature to real spin glasses because of the finite connectivity property of the 
lattice. In addition the spin-glass problems on random lattices with finite connectivity 
is closely related to some well known optimisation problems like graph partitioning 
and colouring [l-71. 

In this letter we consider random lattices with fixed connectivity CY = M + 1, for 
which the bonds’ strength is given by a probability distribution p ( J )  which is even 
under J + -J.  The lattices under consideration are random lattices which are construc- 
ted by building the connectivity matrix aij, whose elements aij = aii are chosen at 
random to be 0 or 1 with the sole constraint 

a,) = M + 1. 
j 

Such random lattices look locally like a tree since small loops are rare [4]. They have 
no boundary and frustration is introduced by the existence of large loops. In addition 
there is numerical evidence [8,9] that the results also apply to a Bethe lattice with 
‘closed’ boundaries as opposed to a Bethe lattice with fixed boundary conditions which 
behaves differently [lo]. 

From the point of view of application to the optimisation problem of graph 
partitioning it is the behaviour of the systems at T = 0 which is relevant and on which 
we will focus in this letter. 

It is now becoming clear that the concept of replica symmetry breaking (RSB) has 
to be applied to the random lattices with finite connectivity as was previously shown 
to be necessary in the infinite range case [ 11 1. The physical meaning of RSB is associated 
with the coexistence of many thermodynamic states separated by infinitely large free 
energy barriers in the thermodynamic limit. This has been established first near T, for 
lattices with average finite connectivity [ 121, and later also for lattices with fixed finite 
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connectivity [ 131. Recently Goldschmidt and DeDominicis [5,6] have shown how to 
systematically construct solutions with RSB at any temperature, including T = 0 using 
an expansion in the inverse connectivity (1/M expansion for T>O and l/m 
expansion for T = 0). The method has been used to calculate the ground state energy 
of spin-glass and the cost function of the graph partitioning problem for values of M 
as low as 9 but calculations for lower values of M requires calculation of higher orders 
in the large M expansion which is very tedious. The question arises whether one can 
directly calculate the properties of the model for small values of M. An attempt to do 
this was made by Wong and Sherrington (ws) [ 141 by using the first-step RSB approxima- 
tion and by further adopting an ansatz which is equivalent to the assumption that 
replicas in different groups do not overlap. They showed that using this ansatz they 
could obtain a free energy slightly higher than that calculated using the replica symetric 
solution (which is an improvement since when one takes the limit n + 0 in the replica 
method one maximises the free energy for values of n < 1 rather than minimising it [ 151). 

In this letter we examine the question in greater detail. First we elucidate the 
relation between various expressions for free energy derived in the literature. We then 
show that the Wong-Sherrington ansatz is actually a stationary point of the free energy 
in the full space of solutions, but only for the case of a bond probability distribution 
of the form 

This is done by using the equations of motion (stationarity conditions) in a very simple 
form which has not been used by ws. Furthermore we show that the above stationary 
solution is not a true maximum for the free energy even within the framework of 
first-step RSB but rather one has to look for an improved solution which does not 
satisfy the non-overlap ansatz. This we achieve by using the variational method. We 
construct a trial local field distribution which depends on some variational parameters 
that yields a higher value for the free energy than that obtained by ws. This solution 
though is not a global maximum of the free energy, thus the ultimate solution for T = 0 
and finite M is not yet available. The fact that the ws solution is not the best one can 
also be expected from the large M calculation [5 ,6]  which shows that the global order 
parameter g { a k }  does not factorise as it does in the ws case. More on this below. 

In the paper by Goldschmidt and DeDominicis [6] it has been shown how to derive 
an expression for the free energy of the system using the one-body and two-body 
density matrices, a procedure valid for a lattice having the local property of a tree. 
The free energy has been expressed in terms of the effective field distribution PL’’{h”}, 
where a = 1 . . . n is the replica index. h” is the effective field exerted on a spin due 
to m neighbouring spins. The expression is 

x u  [2eP’ cosh(phf+ph:)+2 e-p’ cosh(ph:-ph,”)]. 
(I 

(3)  
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This free energy reduces to the expressions obtained previously by Katsura et a1 
[16] and Bowman and Levin [17] if one assumes replica symmetry 

P',M'{h"}= dh P ' ' ( h )  H 6 ( h  - h") .  i a 
(4) 

The free energy can also be expressed in terms of the global order parameter g , { u a }  
[18] which is related to the local field distribution through a Fourier transform [6] 

g,"{iu"}= [ n dh" exp(iP c h " u a ) P L M ) { h a }  (5) 
J a  \ a  / 

where ua = *l are spin variables. One can parametrise 

'x 

g,{g,)= c b, c qa, . . a , V q . .  . Va, 
r = O  (a, ..e,) 

where 

b, = (cosh" P J  tanh' P J )  

the average being taken with respect to p ( J ) .  Here qa, 
In the infinite range model only q n I a 2  appears, but for a 

g n { u a }  in the form 

( 6 )  

(7) 

a, are local order parameters. 
lattice with finite connectivity 

infinitely many order parameters are necessary as was first realised by Viana and Bray 
[12]. In terms of g,  the expression for the free energy is [5,6]: 

nPf= M In Tr,- gy+'{(+,}  

In dJp(J)  Tr, Tr,. g,"{~"}g,"{ .r")  exp P J C  u,,T" ( " ) (8) 
-E 

2 

variation with respect to g, yields the 'equation of motion' (stationarity condition) 

g,{uma)=N dJP(J) Tr,. exP PJc garm g,"{Ta} ( 9 )  i 0 
where X is undetermined (the free energy does not depend on the normalisation of 
g,) and we can choose it for convenience to be 

N-' = Tr, g,"{ua}  (10) 

Equation (9) has been derived previously by Mottishaw [13] and the derivation is 
explained at length in appendix A of [6]. 

Note that the solution of (9) is an extremum of (8) but not necessarily a maximum. 
If we make use of (9) and (10) we can express the free energy (8) in a simpler form: 

n P f = f M  ln(Tr g,""/Tr g,") -&(In Tr g:+'+ln Tr g:) (11) 

which has been used in the calculations of the large M expansion. ws derived [ 19,141 
a different expression for the free energy starting from the Viana-Bray model with the 
extra constraint (1). 

Their expression is derived from a saddle point condition on an integral over the 
order parameters q=,, , ,=,  which is valid in the thermodynamic limit. They expressed the 
free energy in terms of an effective field distribution B({h"}) which is related to 
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the order parameters via 

qa,.. .a,= 1 dh" 9 { h a }  tanh ph",  . . . tanh p a r .  

a 

Their expression for the free energy is 

npf ==In [ d J p ( J )  [ n dhp dh," 9 { h p } P { h i }  
2 L2 

x cosh" p J  n ( 1  + tanh p J  tanh php tanh p h ; )  

-lnTrve[ [ d J p ( J )  I n a dha P{h"} 

x cosh" p J  n ( 1  + aa tanh p J  tanh p h " )  

a 

. 
a I"" 

Let us define the function 

Gn{aa} = C qe,. , c r , ~ o ,  * . . a m ,  * 
( - , - . . a r )  

It is related to 9 { h a }  via 

G,{ia"} = n a dh, exp( ip L2 h a a m ) P { h m }  n a cosh-'(ph"). (15) 

In terms of G,{a"} the ws free energy can be written as 

npf =- In d J p ( J )  Tr,. Tr,- exp M + l  2 I 
-In Trva( I d J p ( J )  Tr,= exp p J  ( T ~ T ~  G{rL2} ( a ) )"" 

variation of (15 )  with respect to G yields the equation of motion 

and % a constant independent of {am}. We see that (16) coincides with equation (9) 
provided we identify 

and 

9 ( h a }  = PL"'"{h"} n cosh ph"( [ n dhaPLMM'{h") n cosh p h " ) - ' .  (21) 
a a a 

The values of the order parameters qa,,, ,a, will be the same in both cases. Using 
(17), (19) and (20) in the expression for the free energy (16), we find that its value 
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coincides with the previously obtained form (equation (11)). This proves that for 
solutions of the stationarity conditions the free energies (8) and (16) yield identical 
results. For values of the order parameters not satisfying the equations of motion the 
two free energies will differ in value. The advantage of the free energy (3) is that it is 
expressed in closed form in terms of the field distributions, all traces over the spins 
being eliminated. The expression (13) on the other hand involves traces over the spins 
which have to be evaluated separately for each value of M and becomes increasingly 
complicated for large M. Its advantage, on the other hand, comes from its derivation 
from the steepest descent approach. The physical acceptable solution in the thermo- 
dynamic limit must correspond to a true maximum of the free energy in the space of 
all order parameters. For the free energy (3) or (8) the physical solution is an extremium 
but not necessarily a true maximum. In the formalism leading to equation (8) stability 
can be checked by repeated iteration of equation (9) near its fixed point solution and 
finding the eigenvalues for the iterative map near that point [13]. The free energy (13) 
(or (16)) is the one suitable for a variational calculation since for any trial distribution 
(be it G{a"} or 9 { h " } )  we are guaranteed to obtain a value lower than the maximum. 

Let us now take a closer look at the stationarity condition (equation (9)). In [5,6] 
it has been shown how to implement a first-step RSB on that equation. Here we give 
only the expression in the limit of zero temperature. For 1-step breaking g,,{am} depends 
only on the variables aK = Xy uK, where a = ( K ,  y )  is the replica index and K = 
1 , .  . . , n / m ;  y = 1 , . . m. We define 

m { X K ) = g n { ( + K I P l  (22) 

and the equation for yn becomes 

where 

p = lim mp 
P-00 

and K is an appropriate normalisation [6]. It is readily seen that there is a solution 
of (22) of the form 

K 

provided p ( J )  is of the form (2). If p ( J )  is not of this form equation (25) does not 
constitute a solution, nor does it constitute a solution for the equation of motion in 
the case of average connectivity [20] even for p ( J )  of the form (2). For the field 
distribution, equation (25) implies . 

where P'''(h) is the Fourier transform of [ f ( x ) ] " .  It is then easy to verify that 
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P ( h )  = P(’)( h )  satisfies the equations 

where we put for simplicity J = 1 .  For p = 0 one obtains again the equations for the 
case of replica symmetry [16, 171 in the limit of zero temperature. 

Equations (27) and (28) have a solution of the form 

P(v)= c o s ( T ) + C I ( ~ ( T + 1 ) + ~ ( 7 7 - - 1 )  (29) 

and one can also add a continuous part as in the case of replica symmetry [16]. Of 
course, one can normalise P(7) to have 

co+2c1 = 1 .  (30) 

For simplicity we restrict the subsequent discussion to the case M = 2. By substituting 
(29) in (27) and (28) we obtain the following equation for the coefficient co: 

co= ( c ~ + 2 c ~ ) / ( c ~ + 2 c ~ + 4 c , c l + 2 c ~  e’*) (31 )  

with c, given by (30). 
The solution of this equation is 

co=[e’*+2-d(e’* -4)2+8(ew -1)]/2(e’* -1). 

Using (29) together with (28) in (3) we find 

f = - In[ c i +  6c0c?+ 6 e’*( cicI + c : )  f 6  e2w cot: + 2 e3’* c:] 
2 

P 

3 
2P  

--1n[e’*(ci+2~:)~+8 e’* cic:+8 e2’* c o c l ( c ~ + 2 c ~ ) + 8  e*’* cot: 

+ 4 e3’* c:( c i+  2 4 )  + 8 e3’* tic: + 2 e3w c:+ 8 e4’* cot: + 2 e’’* c:]. 

f = -1.2723 (34) 

CO = 0.2971 and p = 0.4195. (35) 

(33) 

Using (33) and extremising f with respect to p we finally find 

Although we did not use a continuous part the result differs very slightly from ws 
who obtained f = - 1.2720 when including a continuous part in the field distribution. 
We presented the details of the calculation to demonstrate how simple the present 
formalism is compared with the calculation of ws who did not have the explicit form 
(27) and (28) of the equations of motion. 

One observes though that if one extremises (33) without the use of (32) one obtains 
(35) but this solution is not a maximum of the free energy, (the same being true for 
the replica symmetric solution p = 0, co = 3 which is not a maximum with respect to 
co). Actually (33) does not have an extremum which is also a maximum in the allowed 
range of parameters. 
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We also calculated the free energy ( 1 3 )  which for M = 2 and /3 +CO becomes 

where 

P 2 ( h )  = ( c ; +  2 c i ) S ( h )  + 2c0c,(S(  h + 1) + S ( h  - 1))+ c?(S (h  - 2 ) +  S ( h  + 2 ) ) .  (37) 

Extremising with respect to CO and p we again obtained equations (34) and (35) but 
in this case the extremum is a maximum of (36) in the CO, /.L parameter space. 

We proceed to check if the ansatz (25) is the best within the first-step RSB. In order 
to do that we have tried a variational global order parameter which does not have the 
factorisation property: 

~ { X K }  = [ ( U  + b eXp(x X K )  + b eXp(-x XK)] n (C+ d eXK + d e-XK) (38) 
K 

with 

a + 2 b = l  c+2d = 1 .  (39) 

This form depends on three variational parameters a, c and p. For b = 0 we obtain 
the ansatz ( 2 5 ) .  For d = O  we obtain a replica symmetric ansatz where the field 
distribution is a sum of three S-functions. The global order parameter (38) is not a 
solution of the equation of motion (equation (23)). Thus we use it in (13) (in the /3 +CO 

limit) together with (21), where P'2'{h"} is the Fourier transform of y2{xK}. We have 
found three extrema for the free energy: two of them are saddle points and correspond 
to the replica symmetric and to the fully factorised solution (35) respectively. The third 
one is a maximum and gives: 

f =  -1.271 78 p = 0.6125 a = 0.682 c = 0.599. (40) 

Thus this free energy is higher even from the value obtained for the factorised solution 
with the continuous part, which suggests the true solution does not have the factorisation 
property. It is still a task for the future to find the ultimate solution in the first-step 
RBS approximation. Of course, higher-order stages of RSB will improve the result even 
further but their effect on the free energy is expected to be small. The result obtained 
from simulations of graph bi-partitioning [4] is f =  -1.260, but one has to take into 
account the possible inaccuracy in the simulations, which tend to overestimate the cost 
function. The graph partitioning problem is NP-complete, thus simulation times are 
necessarily extremely long. 

This work was supported in part by National Science Foundation under Grant number 
DM R-8709704. 
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